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Abstract—The problem of a crack impinging upon an interface between dissimilar materials is
investigated using a Consistent Shear-Lag (COSL) model. The primary question to be answered is
whether the crack will cross (penetrate) the interface or be deflected along it. Typically the stress
and displacement fields in the vicinity of an interface create computational difficulties, especially
when the elastic moduli of the adjacent regions vary greatly. The COSL model is modified to include
a finite thickness interlayer region representing the interface to act as a buffer. The energy release
rates for both deflected and penetrating cracks are determined. The ratio of these two quantities is
then compared to that of debond and Modc I toughnesses to investigate the two scenarios for crack
extension. The effect that elastic mismatch has on the energy release rates, and hence the mode of
crack extension. is investigated. These results compare favorably with analytical solutions for semi-
infinitc domain bimaterial problems. The effect of anisotropy is investigated to determine the relative
importance of the effect of clastic constants on the energy release rate ratio. It is shown that of
these, the longitudinal and transverse elastic moduli are of greatest significance. This maodel is
applied to cracks impinging on fiber-matrix interfaces in composite materials, and it is shown that
the fiber volume fraction actually has little effect on the ratio of encrgy release rates.

I. INTRODUCTION

The primary purpose of this paper is to investigate the growth of cracks impinging upon
material interfaces. More specifically, for a crack growing perpendicular to such an interface,
it is of great importance to predict whether the crack will penetrate the interface or deflect
into the interface. This problem has many practical applications, ranging from very small
scale such as the fiber-matrix interface in a fiber-reinforced composite, to relatively large
scale as in the cladding-fuel rod interface in a nuclear reactor. In the former application, it
is often useful to consider a crack within the matrix material impinging upon a fiber. For
the crack to continue to propagate, it can either penctrate the interface and break the fiber,
or deflect into the interfuce and cause debonding. In the case of the cladding-fuel rod
interfuce of a nuclear reactor, the determination of crack penetration/deflection is of prac-
tical concern. Crack deflection at the interface can lead to a separation of the cladding from
the fuel rod, which can create a localized degradation of heat transfer characteristics. On
the other hand, crack penetration of the interface can eventually lead to crack extension
through the cladding to the primary coolant.

Several investigators have treated the crack penetration/deflection problem specifically
for the cuase of bimaterials, By restricting the problem to bimaterials, He and Hutchinson
(1989a) presented analytical solutions for cracks impinging perpendicularly on the interface
between two semi-infinite regions. Goree and Venezia (19774, b) also studied the bimaterial
problem by considering both interfacial debonding and penctration. In addition, others
have given analytical results for bimaterial systems in which cracks are present within the
interface, including He and Hutchinson (1989b), Raju ¢r al. (1987), Rice (1988). Sun and
Munoharan (1989) and Yang (1991). In order to study more complex material systems,
such as fiber-reinforced composites, the Classical Shear-Lag (CLSL) model has been used
by Hedgepeth (1961), Goree and Gross (1979), Dharani er al. (1983), Nairn (1988) and
Nairn et al. (1991). [t should be noted, however, that the CLSL model makes the simplifying
assumptions that the fibers only support normal stresses and the matrix only supports shear
stresses. These assumptions are reasonable when the CLSL model is applicd to composites
in which the fibers are much stiffer than the matrix, such as in graphite-cpoxy composites.
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Fig. 1. Geometry of center-cracked symmetric bimaterial system.

On the other hand. such assumptions cannot be justified for metal-matrix composites
(MMCs) as well as ceramic—matrix composites (CMCs) because the fibers and matrix
possess comparable stiffnesses. Because of this, normal stresses must be included within the
matrix material as well as shear stresses within the fibers. Thus, to accurately model the
behavior of sttt matrix composites such as MMCs and CMCs. it is necessary to resort to
a more broadly based model such as the Consistent Shear-Lag (COSL) model used by
Dharani and Tang (1990), Dharani and Recker (1991) and Chai and Dharani (1991). Tt is
important to note that the CLSL model as used by Nairn (1988) is highly specialized since
it requires the fibers to be of uniform size and spacing. In this respect, the COSL model
offers a distinet advamtage since 1t allows for fibers which are non-uniformly spaced. In
addition, the COSL model allows for anisotropic propertics in cach constituent, thus making
it possible to more accurately model the behavior of certain materials.

2. FORMULATION

The geometry ot the region containing the crack and subjected to a uniform strain &
in the p direction is shown in Fig. I. One advantage of the COSL model (Dharant and
Tang, 1990; Chai and Dharani, 1991) is that it allows for heterogencity on both sides of
the interfuce so that materials 1 and 2 may cach consist of several layers of different
orthotropic materials. Owing to symmetry of the plate about both the x and y axes, the
problem can be simplifiecd somewhat by considering only one quarter of the region. When
the crack tip reaches the material interface, it can cither penetrate or deflect into the interface
as shown in Fig. 2.
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Fig. 2. Geometries of penetrating and doubly-deflected crucks.
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To predict whether the crack will penetrate the interfuace or deflect into it. an energy
release rate approach will be used. He and Hutchinson (1989a) postulate that the crack will
deflect if

Gn: Gd
o I
‘<Gp. (h

where G, denotes the energy release rate of the deflected crack. G, denotes the energy release
rate of the penetrating crack. G, is the interfacial toughness. and G, is the Mode [ toughness
of the material ahead of the crack tip. Otherwise, the crack will penetrate the interface and
may continue to grow self-similarly.

2.1, Consistent shear luy

To implement the COSL model (Dharani and Tang. 1990 Chai and Dharani. 1991).
the region shown in Fig. | must first by divided into N nodal clements. Figure 3 shows a
typical element of finite width / and infinitesimal height dy. From equilibrium, the following
equations can be derived :
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forn=1.2... N whered,, = Kronecker delta (ic. 9, = L il n = m, and 9, = 0 other-
wise), and the comma denotes partial differentiation.

By representing the v and v components of displacements as w and ¢, respectively, the
constitutive equitions for an orthotropic material can be written as

a, =Chu,+Cr,, (3a)
o, = Cu, +Caar,, (3b)

(n) (n)

oV + Ao

y ¥ ORTE)
yX

L 12)
gl =12 dy
X
I, ———

O’E{' + 1/2)

h

rg‘ljl/— 1/2)

{n—1/2)
T
- a(")
y

Fig. 3. Free-body diagram of a typical element used in COSL formulation.
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rn' = rx( = C(\b(“._;‘+l.,l)‘ (SC)

where C,, denotes the elastic constants.
The mid-node stresses can be approximated by averaging:

a¢‘n+12>=%[o,(‘n+|:)|—+o,l:«|2)l+]‘ (4)

where the + and — denote stress values from the right and left, respectively. The afore-
mentioned constitutive equations now become

0.(‘,“ [ g {[Cr;‘“!:+ (] + C';;l'fvf.” ! 2)} "4 [C’;T lll_(,:'+ 1:2) + C'{§ Il‘f:.'* l :)]¢ : (5,‘1)

o = Clad? +Chat'y, (5b)

) S 2 2
t(":,*l"’ - %{C’(',(.["f:+'/2)+l'_(_:+l -)] +C’,‘,§'[u_‘f.'*""+¢'f:’“’"]*}. (5C)
Define the displacement vectors to be

u={u (6u)
v= e ey (6b)
By using the above constitutive relation, eqn (5), in the equilibrium equation (2), and by

converting to dimensionless form by letting y = fiy, the following cquations are obtained
{Dharant and Tang, 1990) :

d*u v
dy? —-Ku=C, dy’ (7a)
d’v du
d)]l —K,v = C,. dl) . (7b)

where K, K., C, and C, arc coeflicient matrices given by Dharant and Tang (1990). These
equations can be coupled into a single matrix equation by letting

W= {1yt U ot e (8)
where the prime denotes diflerentiation with respect to n. The equation then becomes

dw

= C
dy Kw, 9)

K [O : :l I = identit tri
= . N = aent matrix,
K, C, Y

[k o] [o c
l\“ = [0 Kl] and C() = [C, O}

The general solution of this set of equations can be found in terms of the eigenvalues and
eigenvectors of K, as in Dharani and Tang (1990). The derivation given up to this point
was for all clements of equal width, A By a slight modification, the equations can be given
for non-unitorm elements.
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2.2. Eluastic mismutch
For the bimaterial problem elastic mismatch can be quantified using Dundurs’ (1969)
parameters, x and 8. which have been rewritten by He and Hutchinson (1989a) as

=IJ:(1"V|)—#|(1—": =EZ_EI (10)
pa(l=v)+u (1—vy)  E,+E’
(0 =2v ) =, (1 =2v5)
= 1
b a(l=v )+ (1=v,) (th
where
-
1 —v;

i, denotes shear modulus. and v, denotes Poisson’s ratio. It is important to note that the
indices are the reverse of those used by He and Hutchinson (1989a). That is. i = | refers
to the material containing the initial crack. and i = 2 refers to the material ahead of the
crack.

2.3. Energy release rates

The stresses and displacements are computed from the formulation given above, To
apply the crack penetration/deflection criterion given by eqn (1), the encrgy release rates
for a penctrating crack (G,) and a deflected crack (Gy) must be determined. For the
penctrating crack, a potential energy approach is used [p. 159 of Kanninen and Popelar
(1985)]. To employ this method, the potential energy, B, for a given crack configuration
is defined as

bl

i
W= 3 Z (@l 4+ h). (12)

1=

The cnergy release rate s defined as
'p = he 13
G, = ; S (13)

This expression is similar to egn (3.3-3) of Kuanninen and Popelar (1985), except that a
factor of *2" is included to account for both crack tips. Using the finite-difference method,
G, can be approximated as

AW W,—W,

- A e 14
P2 Aa 200 (14)

where ¢ denotes crack length, W, denotes potential energy for a crack length a, and W,
denotes potential energy for a crack of length ¢+ Aa.

For the deflected crack, the energy release rate, Gy, is found by evaluating the crack
closure integral of Irwin (1957), which has been recast as

l & & .
G, = ‘I,im {7—(). l:'[’ a, (a,y)i(a. y—3) dy+J T (a, ) (a. y—9) d_v]}. (15)

where @ and ¢ denote relative displacements. In eqn (15). the first integral is for the
contribution to G, from Mode [, and the second integral is for the contribution to G4 from
Mode I1. It should be noted that G, could have been found theoretically from the potential
energy method used to find G,. However, in computing values of G, using both methods,
the crack closure integral method producd more consistent results. This is due to the fact
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Fig. 4. Schematic of the interlayer at the bimaterial interfuce.

that the increment in split length was much smaller than the initial crack length, a. Since
the potential encrgy method requires the two potential energies, W, and W, to be computed
over the entire crack fength, any difterence due to the relatively small split length increment
would be negligible. On the other hand, the crack closure integral method involves only the
incremental split itself, without the initial crack. Therefore, the crack closure integral method
is much more sensitive to changes in split length, and produces more consistent results.

2.4, tuterlayer model

For the case of a crack occurring along a bimaterial interface, Sun and Manoharan
{1989) and Yang (1991) observed that the crack-tip stress ficld exhibits a highly oscillatory
behavior. This creates problems in defining the energy release rates for Mode 1 and Mode
1. To alleviate this problem, it has been suggested by Raju ef af. (1987) that an interlayer
may be used at the intertace itself, In a similar fashion, Yang (1991) uses such an interlayer
to give & more gradual transition between the two regions of the bimaterial system.

In the present work, it has been observed that very high stress and displacement
gradicnts oceur near the interface. Although the geometry is quite different from the system
studicd by Yang (1991), it scems reasonable to use a similar interlayer to solve this problem.
To implement the interfayer approach, the problem was modeled as shown in Fig. 4. As
shown here, cruck deflection is assumed to occur within the interlayer itsclf. Physically, this
is analogous to a composite comprised of coated fibers in which fiber-matrix debonding
occurs within the coating. To obtain material propertics for the interlayer, the elastic
constants C, for nodes adjacent to the interfuce were averaged, and these values were then
substituted into the nodes comprising the interlayer. This allowed the interlayer to act as a
buffer between the materials on either side of the interface. It is important to note that this
approuch gives reasonably good results as long as the interlayer is thin relative to the other
regions. For the computations performed here, the interlayer had a thickness approximately
0.02 times the overall crack length.

3. RESULTS AND DISCUSSION

Since the computed values of Gy/G, are found using a finite-difference formulation,
the results may be dependent upon the number of nodes used. To determine what depen-
dence, if any, exists, it is necessary to check the convergence of the results. Using properties
for aluminum (£ = 69 GPu and v = 0.3), the convergence was found by computing values
of G4/G, for an increasing number of nodes. These results are given in Fig. 5. A uniform
mesh (i.c. all elements of equal width) was used. To maintain a constant crack length, the
nodal mesh size, &, was set equal to I/N, where ¥ = the number of nodes. It was found
that by letting the split (debond) length equal the mesh size, the convergence was quite
acceptable.
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Fig. 5. Test of convergence of results for G,/G,.

Some results for the bimaterial arrangement shown in Fig. | are presented now. In such
a bimaterial system, the two dissimilar elastic materials could be treated as homogeneous
isotropic, homogencous orthotropic, or hetcrogencous, with a crack impinging per-
pendicularly upon the interface. The first case to be considered is that in which the two
materials arc homogencous and isotropic. To fully investigate the cffect of elastic mismatch
upon G,/G,, it would be of interest to compute the ratio of energy release rates for various
combinations of « and . However, owing to the large amount of CPU time which would
be required, the method here will be to calculate Gy/G, versus 2 (holding 8 = constant),
and similarly to caleulate G,4/G, versus 8 (holding & = constant). For the former (Gy/G,, vs
a), the results are found for f# =0 and presented in Fig. 6. One curve is shown for the
symmetric geometry described carlicr, and corresponds to a matrix-crack lying between
adjacent fibers in a fiber-reinforced composite. To give some sense of how these results
compire with analytical results, the work of He and Hutchinson (1989a) is also shown.
Since their results are valid for a system with only one interface, the previous COSL
formulation was modified to allow for a free-cdge along the p-axis (instead of a symmetric
geometry), and these results are included for comparison. Of the two geometries studied
here, the frec-cdge results show better agreement with the analytical results, especially for
a > 0. It should be noted that the bimaterial system studied by He and Hutchinson (1989a)
consisted of semi-infinite elastic half-plancs, whereas this rescarch deals with a system of
finite domains. Physicully, an increase in x means that the material ahead of the crack tip
becomes stiffer with respect to the material containing the crack. Consequently, as that
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material becomes stiffer, the advancing crack has more tendency to deflect into the interface
rather than penetrate the stiffer material. Thus, the trend shown in Fig. 6 makes physical
sense. It is also worth noting that for x > 0. the symmetric geometry predicts lower values
for G,4/G, than does the analyticul model. One way of viewing these results is to apply them
to fiber-reinforced composites. First assume that material | is the matrix. and let material
2 be the fiber. Since the analvtical model is valid for semi-infinite regions. it can be viewed
as a limiting case in which the fiber spacing is very high. and. therefore, the fiber volume
fraction is very low. The COSL model. on the other hand. represents a more realistic
composite with lower fiber spacing. and higher fiber volume traction. In this manner, it can
be argued that-G, ‘G, decreases as fiber volume fraction increases (fiber spacing decreases).
and this will indeed by shown in a later scction.

One significant advantage ot the present formulation is the relative ease with which
Dundurs’ second parameter. ff. can be varied. In their work. He and Hutchinson (1989a, b)
showed that for f§ # 0 the analytical formulation becomes much more complicated due to
an oscillatory singularity. Fortunately. the COSL model does not have any such limitation.
The results for G;/G, vs f# (x = 0) are shown in Fig. 7. It appears that the monotone
decreasing trend shown is relatively slight compared to the effect of x on G /G, This result
agrees with the argument of He and Hutchinson (1989b) that £ s much less significant than
a when these parameters are used to investigate crack-tip behavior in bimaterial systems.

One of the hmitations of the present model is the manner in which the energy release
rate for deflection, Gy, is tound. That is, in order to compute this value, it is necessary to
begin with a small initial split, or debond, length (theoretically, one should begin with an
infinitesimal split length). As a result, the computed value of G depends on the split length
chosen. To demonstrate this dependence, GG, was found for various values of split length
using a uniform nodal mesh containing 80 nodes (40 nodes along the crack). The resultant
graph of G/G,, vs debond length normalized with respect to crack length (/) ‘@) is shown in
Fig. 8. Itis interesting to note that the ratio reaches a peak at a small value of normalized
split length, //a = 0.01, then gradually tapers ofl for larger values. For this reason, the
results involving clastic mismatch, Figs 6 and 7. were computed using a normalized split
length of 0.01. As it turns out, these results agree quite favorably with those of Budiansky
etal. (1986). In particular, their results for debond length vs debond toughness demonstrate
almost precisely the same behavior as that presented here. This is perhaps most surprising
considering that the BHE model correctly accounts for the eylindrical geometry of the fiber,
whercas the COSL model used here approximates cach region, fiber or matrix, as a layer
of uniform width. In their paper, Budiansky er al. (1986) also discuss the significance of
G,/G, for values of [y/a which occur between 0 and the peak value of ¢,/G,. They conclude
that faws and imperfections present within the matrix are likely to be lurge enough to
preclude the existence of such small debonded lengths, which would imply that when

0.5

0.1

0.0t r r r r
-0.50 ~0.25 0.00 0.25 0.50

BETA

Fig. 7. Effect of Dundurs’ parameter ff on G, Gy, holding x = 0.
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Fig. 8. Effect of normalized debond length (/y/a) on G,/G,.

debonding occurs, the debonded length would immediately shift to a value to the right of
the peak value of G,/G,.

The next results presented are intended to show what happens to the ratio Gy/G,, as
the crack initially approaches the bimaterial interface and eventually penetrates it. The
matcrial propertics used are £, = 69 GPa, E, = 2E,, and v, = v, = 0.3. As it is used here,
the normalized crack length, a/L, is defined so that a/L = | at the bimaterial interface. To
obtain these results, debonding is assumed to occur at the crack tip, which is not always at
the interface. It should be pointed out, however, that crack deflection (debonding) is unlikely
until the crack tip reaches the interface. It is cvident from Fig. 9 that the only significant
cifect on Gy/G,, is when the crack tip is very near the interface. This should probably come
as no surprise since crack growth depends primarily upon the stress ficlds very near the
crack tip itself, and therefore the interface appears to have little effect on cracks not directly
impinging upon it.

In the analytical studies done on the bimaterial systems (He and Hutchinson, 1989a,b;
Goree and Venezia, 1977a,b; Raju et al., 1987 ; Rice, 1988 ; Sun and Manoharan, 1989 ;
Yang, 1991), it was generally assumed that both materials were isotropic. Using the COSL
approach, it is possible to generalize the bimaterial problem for those cases where one or
both materials are anisotropic. As a means of demonstrating this, a system where the
material behind the crack tip (material 1) is isotropic, and the material ahead of the crack
tip (material 2) is anisotropic is considered. Material 1 was chosen to be aluminum, with
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Fig. 9. Effect of normalized crack length (a/L) on G,/G,.
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E, =69 GPa, and v, = 0.35, and matenal 2 was a hypothetical material with £, = 20E,
and v, = 0.30. From these propertics, the elastic constants, ;. were found. To create
anisotropy in material 2. the original constants €, were moditied so that one of them was
varied while the others remained constant. To quantify this variation, the original C; value
was multiplied by a “ratio of anisotropy’, R. As an example, the curve for C,, was obtained
by calculating G,/G, tor RC, . 0 < R < |, while C5,. Cy; and C,, were kept unchanged.
The results for various values of R are presented in Fig. 10, From these results, it is apparent
that the energy release rate ratio s most greatly aftected by C,,, and to a lesser extent by
Cyy. Conversely, the ratio is only slightly affected by €y, and C,.

Since much interest in recent years has focussed on the use of CMCs, it is of some
practical concern to investigate the behavior of cruck growth in fiber - matrix composite
systems. For these composites, the clastic moduli of the fiber and matrix phases are
comparable, and the use of classical shear-lag models is unacceptable. In this paper, the
COSL model is used to study the effect of fiber volume fraction on the ratio G,4/G,. To
accomplish this, the following typical propertics that correspond to SiClglass -ceramic
composites are used: £, = 85 GPa, v, = 0.25, £, = 200 GPa and v, = 0.25. It should be
pointed out that the model used here approximates cach region, fiber and matrix, as a layer
of uniform width, thus neglecting the cylindrical geometry of the fibers. Therefore, it is
probubly appropriate to consider the ratio of fiber width to fiber spacing 1o be an effective
fiber volume fraction. By varying the number of nodes in cach region, G,/G, is calculated
for different volume fractions, and these values are given by Fig. |1, These results indicate
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EFFECTIVE FIBER VOLUME FRACTION

Fig. 1. Effect of tiber volume fraction, or fiber spacing, on G, G,
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that the energy release rate ratio shows a slight decrease for increasing 17, although the
effect is rather minimal. This could also be viewed as the variation of G,/G, as a function
of fiber spacing for a given fiber size.

4. CONCLUSIONS

The resuits presented here demonstrate that the COSL model can be effectively used
to predict the mode of extension. penetration or deflection. for cracks impinging upon a
bimaterial interface. To facilitate the computations. an interluyer was included along the
interface to act as a butfer between adjacent materials. By first using the COSL model to
investigate the bimaterial problem. the subsequent results were shown to compare well with
the existing analytical treatment of the same problem. In addition, the convergence was
shown to be uniform and quite acceptable. Results are then presented for situations where
the traditional analytical methods are not well suited. such as material anisotropy. It is
shown that Gy G, is significantly affected by variations in C,; and C,,, whereas variations
in C,:and C,, were of little consequence. For cracks at fiber-matrix interfaces in composite
materials, the fiber volume fraction, or fiber spacing for a given fiber size, is shown to have
relatively fittle effect on G/ G,

Acknowledgement —The authors wish to acknowledge the Cornell National Supercomputing Fuacility (CNSF).
whose resources were utilized extensively for the computationad work involved in this rescarch.
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